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INTRODUCTION 

This note provides a new algorithm for energy 
lookups during the construction of material cross-sections 
in a continuous-energy Monte Carlo code. A new hash-
based energy lookup algorithm provides speedups of 15-
20x over conventional schemes and requires about 1,000x 
less memory than unified grid methods. The hashing 
scheme is based on a log-energy grid and provides search 
bounds for each isotope that greatly reduce the lengths of 
energy table searches. It should be useful to code 
developers for optimizing the performance of any Monte 
Carlo code for particle transport.   

Problem Statement 

In the Monte Carlo simulation of neutrons, the 
macroscopic total cross-section must be constructed for 
the material in the current spatial region containing the 
neutron. This must be done after every change in energy 
(from collisions) or material (from boundary crossings). 
Typically, these cross-sections are not precomputed due 
to limitations on memory space, but are computed on-the-
fly from the constituent isotopic cross-section data. For 
problems with 100s of isotopes in each material, the 
construction of the total material cross-section has been 
observed to take about 33% or more of overall computing 
time for MCNP [1,2] and 85% of the time for OpenMC [3]. 
The first and most time-consuming part of this 
construction involves searching the energy table for each 
isotope’s cross-section data to determine the energy bin. 
The energy table for an isotope typically has 102-106 bins, 
depending on the variation in the cross-sections, number 
of resonances, threshold reactions, etc. Each isotope has a 
different energy table. Because of the generality and size 
of the energy tables, binary searches are always used. 
(Binary searches scale as O(logN), while linear searches 
scale as O(N), where N is table size.). Typically, 100s of 
binary searches in tables of length 102-106 must be 
performed after every collision or material boundary 
crossing for every neutron, requiring ~1014 binary 
searches for a billion-neutron simulation. 

Background 

Selecting algorithms for a code usually involves 
balancing space (memory storage) and time (fewer 
operations). The fastest algorithms usually require large 
amounts of data to be precomputed and stored; the slower 

ones usually compute or search repeatedly to save 
memory space. 

MCNP has always used the repeated, time-consuming 
binary search of all isotopic energy tables to save memory 
and preserve full accuracy of the cross-section data tables. 
In the 1980s, some codes (e.g., RACER [4]) made use of a 
unified energy grid to attain speedups and aid 
vectorization. All isotopic cross-section data was 
interpolated and averaged onto a single energy table with 
104-105 bins. That scheme required only 1 binary search 
for a material, rather than 1 for every isotope in the 
material. Speedups were impressive, 20-50x faster than 
MCNP, due to fewer searches and to vectorization, but the 
cross-section remapping in energy introduced 
approximations and greatly increased memory 
requirements. The unified energy grid could only be used 
on problems with small to moderate numbers of isotopes 
per material, or few materials. Later, as problem sizes 
grew and Monte Carlo depletion became routine, the 
unified energy scheme was replaced by on-the-fly 
computation. In the early 2000s, Serpent [5,6] used a 
unified energy grid, with all material cross-sections 
precomputed. That provided significant speedups, but 
limited problem size. To preserve accuracy (by not 
remapping the cross-sections to fewer energy bins), 5-10 
M energy bins are required. To avoid the huge memory 
penalty for interpolating and storing all cross-section data 
onto such a large energy grid, the unified grid scheme was 
enhanced to a “unified grid with pointers” scheme, where 
only a single index for each isotope and unified energy 
bin was stored. After 1 energy lookup per material, the 
indexes for each isotope could be used to retrieve and 
interpolate isotopic cross-sections on-the-fly. While only 
slightly slower than the previous scheme, the memory 
saving was significant. Still, 5-10 M indexes must be 
stored for each isotope in the problem, requiring 10-20 
GB of memory for depletion problems with 300 isotopes. 

 

HASH-BASED ENERGY LOOKUP ALGORITHM 

The new algorithm for energy lookups during 
material cross-section construction in MCNP is called a 
“hash-based energy lookup.” It was suggested by G. 
Zimmerman [7], but turns out to be identical to an energy 
lookup scheme used in the 1980s [8], and probably in 
other codes before that. 



The setup portion of the algorithm, performed prior 
to neutron random walks, involves the following steps: 

1. Determine the minimum and maximum energy 
bounds for the problem, by checking each of the 
isotopic cross-section datasets in the problem. 
These will be denoted Emin and Emax. 

2. Choose a value for M, the number of bins in a 
single energy grid with uniform spacing in ln(E) 
between Emin and Emax. This energy grid will be 
called the ugrid. 

3. For each bin in the ugrid, determine and store for 
each isotope the bounding indexes k1(u,i) and 
k2(u,i) in the energy table for that isotope, where 
i is the isotope index and u is the index in the 
ugrid. 

The ugrid is completely defined by M, Emin , and 
Emax, and need not be explicitly stored. Also, because 
k2(u,i) = k1(u+1,i)+1, the k2(u,i) values need not be 
explicitly stored. The default value for M in MCNP6 was 
chosen after some experimentation to be 8,000. This 
requires total memory storage of (M+1)I values, where I 
is the number of isotopes in the problem. For M=8000 and 
250 isotopes, the total memory requirement is only 8 MB. 
Larger values for M give improved speed, but the 
dependence is weak for M greater than a few 1000. 
Smaller values of M reduce the speedup but also reduce 
the memory requirements. The value chosen for M does 
not in any way affect accuracy of the cross-section data. 
The k1 and k2 indexes for each isotope for each of the 
ugrid bins are simply the bounds for performing ordinary 
binary searches in the isotope datasets. These bounds 
narrow the range of the binary searches, so that only a 
small portion of the isotopic energy table need be 
searched. 

During the neutron simulation, a simple hash 
function is used to determine the location of a neutron’s 
energy in the ugrid. For that bin in the ugrid, the k1 and k2 
indexes for each isotope are retrieved and binary searches 
are performed in the isotope energy tables in the normal 
manner for each isotope. The difference from the previous 
energy lookup scheme is simply that the hash function, 
ugrid, and k1 and k2 indexes greatly narrow the search 
regime to a few isotopic energy table entries, rather than a 
more costly search of the entire tables. 

Defining umin=ln(Emin), umax=ln(Emax), and 
du=M/(umax - umin), the new algorithm for energy lookups 
for neutron energy E is: 

1. u = 1 + ⎣du·(ln(E)-umin)⎦,     where ⎣ ⎦  denotes 
truncation to the next lowest integer. 

2. For each isotope i, search its energy table 
between entries k1(u,i) and k2(u,i). 

It should be noted that frequently the search range in 
the isotopic energy tables is small, often less than 8. For 
such small ranges, a simple linear search scheme will be 
slightly faster than a binary search and may provide 
additional small speedups.  

 

COMPUTATIONAL TIMING RESULTS 

Two tests were carried out to demonstrate the 
speedups attained by the new hash-based energy lookup 
algorithm. The first involved stand-alone coding focused 
solely on measuring the timing for the energy lookups, 
while the second involved overall timing measurements 
for MCNP6 using different energy lookup schemes.   

Timing results for energy lookup 

The first test involved stand-alone coding to compare 
3 methods: the conventional scheme used by MCNP6 with 
an external function for performing binary searches, the 
conventional scheme used by MCNP5 with explicit inline 
coding for the binary searches, and the new hash-based 
scheme with inline binary searches. The energy tables for 
9 isotopes from the ENDF/B-VII.1 nuclear data libraries 
were used in the comparisons: 1001.80c, 8016.80c, 
26056.80c, 92235.80c, 92238.80c, 94239.80c, 94240.80c, 
94241.80c, 6000.80c. These isotopes had energy table 
sizes ranging from 590 to 157,744. For each energy 
lookup scheme, many millions of neutron energies were 
randomly sampled in the ugrid range, and then the energy 
lookups were performed for all 9 isotopes. Results are 
given in Table 1. 

From the timing results in Table 1, it can be seen that 
ordinary coding optimization (inlining the binary 
searches) can provide a speedup of only 10-20%, while 
the use of the new hash-based algorithm gives speedups 
of 15-20x.  

A number of variations on the testing were carried 
out. To see the effect of different choices of M, for 
example, values of 64k, 32k, 16k, 8k, 4k, and 1k were 
used resulting in MacBook timings of 2, 2, 2, 3, 3, and 5 
ns/lookup, respectively. For MCNP6.1.1, M=8192 was 
chosen as the default. To see the effect of a mixed search 
scheme, after the hash-based lookup of bounds, a linear 
search was used when table intervals were 8 or fewer and 
a binary search when table intervals were greater than 8. 
For the stand-alone Mac timing tests, there was no 
improvement in speed, so this mixed search scheme was 
not implemented in MCNP6.1.1. In all of the stand-alone 
testing, all lookup results were checked to verify that they 
were exactly the same as those for the conventional 
lookup scheme. 



It is also interesting to note the timings for 2 different 
systems: While the Mac Pro and MacBook used for 
testing had the same cpu speed, the speed of the memory 
chips gave significantly different timing results. This is 
due to the nature of the energy lookup scheme – it is 
primarily energy retrieval from memory and comparisons, 
with no arithmetic operations. In addition, the new 
algorithm is more cache-friendly than the conventional 
scheme: there are fewer memory references, and those 
references are not as widely dispersed as for the 
conventional scheme.  

Timing results for MCNP6 

It has been reported that MCNP6.1, the initial release 
of MCNP6 in 2013, runs significantly slower than MCNP5 
[9]. A number of routine coding optimizations were made 
to MCNP6.1 and incorporated into the MCNP6.1.1 Beta 
release for 2014. The new hash-based energy lookup 
algorithm was then included into MCNP6.1.1 as the final 
step in the initial code optimization work. Table 2 
presents the speedups in MCNP6.1.1 due solely to the new 
energy lookup algorithm. 

 

CONCLUSIONS 

While the new hash-based energy lookup algorithm 
by itself is 15-20x faster than the conventional scheme, it 
is only a portion of the overall work and computations 
performed by MCNP. The overall speedups due to the new 
energy lookup algorithm will vary, depending on the 

particular physics and geometry of each problem. 
Problems with more collisions per history and more 
isotopes per material will show larger speedups; problems 
with more tallies, more complicated geometry, or fewer 
isotopes per material will show smaller or no speedups. 

A particular advantage of the new hash-based energy 
lookup algorithm over unified energy grid schemes is the 
very significant reduction in memory requirements – MBs 
instead of GBs. Such significant memory savings are 
important for future generations of computers that are 
expected to have very many more processors, but less 
memory per processor.   

The new hash-based energy lookup algorithm has 
been incorporated into the MCNP6.1.1 Beta release in 
2014. Currently, the new lookup algorithm is used only 
for energy lookups in neutron data tables. Future work 
will investigate whether the new algorithm can be 
effective for other problems (e.g., photons, light ions). 
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Table 2. MCNP6.1.1 speedups due to new hash-based 
energy lookup algorithm. 

Problem 
Overall 
Code 

Speedup 

OECD Performance Benchmark, 3D PWR, 60 
isotopes, no tallies 1.2x 

BAW XI(2), ICSBEP Problem LEU-COMP-
THERM-008, Case-2, 31 isotopes, no tallies 1.2x 

Godiva problem, 2 isotopes, no tallies 1.0x 

Godiva problem, with trace amounts of 421 
other isotopes 1.9x 

Reactor pin cell with 147 isotopes 1.5x 

Porosity tool for well-logging, 5 isotopes 1.0x 

 

Table 1. Timing results for stand-alone test of energy 
lookup methods. Results are the average time 
for each energy lookup. 

 
Mac Pro,  
3 GHz Xeon,  
667 MHz mem 

MacBook,  
3 GHz i7,  
1600 MHz mem 

MCNP6.1 energy 
lookup, with 
external binary 
search function 

97 ns 67 ns 

MCNP5 energy 
lookup, with explicit 
inline binary search 
coding 

81 ns 57 ns 

New hash-based 
energy lookup, with 
explicit inline binary 
search coding 

6 ns 3 ns 
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